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The forward-backward semiclassical dynamics (FBSD) methodology is used to obtain expressions for time
correlation functions of a system (atom or molecule) in solution. We use information-guided noise reduction
(IGNoR) [Makri, N. Chem. Phys. LetR004 400, 446] to minimize the statistical error associated with the
Monte Carlo integration of oscillatory functions. This is possible by reformulating the correlation function in
terms of an oscillatory solvent-dependent contribution whose integral can be obtained analytically and a slowly
varying function obtained via a grid-based iterative evaluation of solute properties. Knowledge of the exact
integral of the oscillatory function, combined with correlated statistics, leads to partial cancellation of the
Monte Carlo error. Application on a one-dimensional schgelvent model shows a substantial improvement

of convergence in the IGNoR-enhanced FBSD correlation function for a fixed number of Monte Carlo samples.
The reduction of statistical error achieved by using the IGNoR methodology becomes more significant as the
number of solvent particles increases.

I. Introduction The forward-backward semiclassical dynamics (FBSD) meth-
odology developed in our group is obtained by using a derivative
identity to convert one of the two probed operators in the

polyatomic systems under conditions where the latter exhibit corrglatlon function Into an exponentlal form and applying th?
. L . . ) semiclassical approximation in a coherent state representation
substantial deviations from classical behavior, while decoherence . N
. g to the resulting product of three evolution-like operators. FBSD
guenches any quantum interference effects characteristic of Iow-ex ressions are similar (and, within the stationary phase
dimensional Hamiltonians. This methodology employs a fully P ; yp

guantum mechanical path integral representation of the Boltz- approximation, equalenQ to those of the W igner formalism,
. . . e but the phase space density of the former is directly amenable
mann operator, along with a classical trajectory description of

the dynamics obtained from the stationary phase limit of the to fully quantum mechanical path integral treatments. (Evalu-

exact expression for the time-dependent function of interest (e.g.,a.mon of the ngner function requires a Fourier-like transformg—
. - . - tion of the density operator, which, in the past, has been feasible
time correlation function or expectation value).

; . ) : . only within locally harmonié547 or imaginary-time Gaussiéf>!
Several semiclassical formulations of time correlation func-

i i i i 2,15,16,52
tions are available. The most rigorous (and accurate) Semiclas_approxmanons.) A number of applicatidAs have

) . - . . - shown that FBSD provides a faithful representation of the short-
sical approach consists of applying the semiclassical approxi- . . . o :

. X . ; : time dynamics of fluids that exhibit substantial or even
mation (either in the coording® or in a phase spaée

representation) to each of the two time evolution operators thatgﬁagtrztllj\ilg cﬂlz\g:tlons from classical behavior, even in the
enter a time correlation functicR-2° By retaining the full P P i ) . .
semiclassical phase, such double semiclassical expressions FBSD expressions contain a phase space density, obtained
usually offer a faithful description of quantum mechanical through a coherent state transformation of t.h'e density operator
effects, including interference. At the same time, the presence (the Boltzmann operator for systems at finite temperature).
of the semiclassical phase leads to severe instabilities in theEvaluation of the latter via the path integral representation
Monte Carlo evaluation of such functions, which becomes results in an integrand with a small oscillatory component. Even
impractical for many-particle systems. The so-called “sign th_OUQh the small negative ar_npl_ltud_e regions occur onIy_|n the
problem” is circumvented in formulations that eliminate (par- Wings of the phase space distribution, phase cancellation can
tially or entirely) the oscillatory semiclassical phase. Partial PECOmMe a serious issue in calculations with hundreds of
elimination of the phase is possible through initial value degrees of freedom. This is so because small negative portions
representations with a momentum jump at the end of the forward Multiply positive regions, and the volume of negative parts
trajectory’® or generalized forwardbackward procedured; ~ @pproaches the volume of positive parts at an exponential
these methods can capture quantum phase interference effectat€ as the number of particles is increaSegor this reason,
Total elimination of the semiclassical phase leads to expressions’ BSD calculations converge slower than purely classical phase
that converge with much less computational effort. These include SP2c€ averages, often requiring millions of trajectories for
the well-known Wigner forr#?% (also derived via a linearized acceptable precision. Thus, devising techniques that enhance

In a series of papefs;t® our group has described and applied
an efficient methodology for simulating the dynamics of

semiclassicaltreatmetit37and forward-backward schem@s!931.38-45 the convergence of these calculations is highly desirable. Further,
recent applications of FBSD focused on various neat fluids,

t Part of the “Thom H. Dunning, Jr. Festschrift". where one can average the computed observable properties with
* Corresponding author. respect to all the particles in the simulation, leading to a
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significant enhancement of the statistics. The simulation of a
molecule in solution, however, where the statistics cannot benefit
from a similar averaging, is expected to be significantly more

challenging.

The present paper presents our recent progress in using FBSD

ideas to simulate dynamical properties for a particle in solution.
Makri recently introduced information-guided noise reductfon
(IGNoR), a methodology for improving the statistics in Monte
Carlo calculations of oscillatory integrals. This applies to
situations where the integrand is a product of an oscillatory
function whose integral is known and a slowly varying function.
The main idea is that knowledge of the exact integral of the
oscillatory function constrains the positive and negative volumes,
such that only one of the two needs to be calculated by Monte
Carlo sampling. Taking advantage of correlations, IGNoR
obtains the desired integral by calculating how much the slowly
varying function modifies the positive and negative volumes
of the oscillatory function. In high-dimension space, where
smooth functions tend to affect the positive and negative regions
of the integrand in very similar ways, one can show that the
application of IGNoR can lead to a dramatic reduction in the
statistical error.

The methodology is described in section Il. After a short
review of the FBSD methodology, this section applies FBSD
to a particle in solution, focusing in particular on the momentum
autocorrelation function of the solute. Next, the integrand is
split into two parts, and each of the two is evaluated by IGNoR
procedures. In section Il we demonstrate the benefits of the
IGNoR-enhanced FBSD methodology by applying it to a one-
dimensional solutesolvent model. Finally, some concluding
remarks are given in section IV.

II. Methodology

The need for semiclassical descriptions arises because

dynamical properties are sought that are too difficult to obtain
with a fully quantum mechanical description. In the FBSD

approximation, particles obey classical mechanics, but the
trajectories are weighted by the Boltzmann factors of the initial
guantum mechanical description of the system. As long as

guantum interference effects are naturally suppressed by deco-
herence, this methodology enjoys considerable accuracy and

scaling advantages over classical molecular dynamics and fully
guantum mechanical approaches, respectively.

A. FBSD Expressions.One commonly evaluated time-
dependent object is the correlation function of a particle.
Time correlation functions have the following general
form:

Coglt) = %Tr(e*ﬂpi AdUhggifth) 2.1)

HereH is the Hamiltonian of al-particle systemA andB are
arbitrary operators, and is the canonical partition function.
Here A operates on the initial state of system, whitg) =
gHhBe-HUh operates on the system at a later time. In the
derivative version of FBSD developed by our grdufhe
operatorB is expressed as a product of exponentials according
to the following identity:

Ay — i 0 At juB —~iAth
B(t) [ 8ﬂe e““e (2.2)

u=0

Application of the forware-backward semiclassical approxima-
tion in a coherent state representatioieads to the following
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FBSD form for the operatot®
1
(2ﬂh)3d f dqof dpeB(a,,py) x
3
2+3

Hereqo andpy are thed-dimensional vectors of the initial phase
space variables, which serve as the initial conditions for classical
trajectories that evolve according to Hamilton’s equations of
motion, |gopolJare the coherent state functions of the form

B(t) =

%po@mopd — 2y*(q — do)|doPedeP,l (G — dg)]
(2.3)

m”quOD: (5)3d/4(detj/)1/4 x
x| ~(q ~ a9)"(@ ~ a9 + gpo(a — )| (24

andy is a diagonal matrix of coherent state width parameters.
Substitution in eq 2.1 yields the following FBSD expression
for the correlation function:

Cap(t) = (27h)*Z " [, ['dpB(a(D).p(t) x
[(1 + Ed)mopde’ A|q0pOD—
ZEJOPOI(G - qO)°e_ﬂHAV'(q - qO)|quoq] (2.5)

The FBSD procedure can also be applied to obtain an expression
for the inner product of two vector operators. In that case, the
FBSD expression takes the fotn

Cas(®) = Z *Tr(e ™A (0)-B(1))

= (27h) %27 [dq, [ dpo(l + gd)m0p0|e_/mA|quOD
B(a(t),p(t)) — 2(2th) *Z* [dq x

PolloPol (@ — do)-e A q(t),p(®)]-
S dpgTiopol(@ — ag)-€ "[A-B(a().p(t)]
y+(4 — do)ldgPoU (2.6)

The Boltzmann operator in these expressions is evaluated
using the conventional path integral discretization. Due to the
presence of coherent states, the resulting expression differs from
the common path integral representation of the partition function
in terms of position states in that the resulting “neckl&&abw
closes on a special phase space “bead” that specifies the starting
point of a classical trajectory. For sufficiently short imaginary
time stepsAB = pIN, the propagator can be written in the
approximate form

myle—AﬂﬂmuD: m]l|e—Aﬁ?|qH@‘Umﬁ[V(Q')"‘V(Q")] (27)

This approximation arises directly from the well-known Trotter
splitting of the total Hamiltonian into kinetic and potential
energy. (However, we note that the more accuratepawduct
approximatior®’ also available in the coherent state fofhgan

be cast in a similar form by replacing the average potential by
an effective two-particle potential that depends on the coordi-
nates of both endpoints. To simplify the presentation, we retain
the form of eq 2.7, noting it is a straightforward matter to
implement the procedure described below with the-paiioduct
form.) By implementing the discretized path integral treatment
of the Boltzmann operat& it has been shown that the integrand
of eq 2.6 consists of an exponential p@rthat arises from the
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discretized Boltzmann operator and a non-exponential/fart
g that includes all time-dependent contributions:

Caal) = 27h) ™ ['dq, [dp, x

Jda, -+ - [day® ooy - A Are(0oPoTs- - )
(2.8)

The function

O(Ao,Po,dy;- - 'qN) = (Zﬂh)_wmopde_AﬁHd2|91[b_Aﬁv(Q1) X
G, g, . . x e VW g, |e2H2)qp,0(2.9)

is the integrand of the partition function in the coherent state
representation, anda.g has been given in previous publica-
tionstt15 for specific forms of the probed operators.

Unlike the purely classical form of a correlation function,
the FBSD expressions contain (fbr > 1) oscillatory phase
factors. Because the statistical error in Monte Carlo calculations
grows exponentially with integral dimension when the integrand
appears to be even mildly oscillatory when viewed in the space
of a single integration variabR,numerical evaluation of FBSD

correlation functions can be demanding. Nevertheless, these slow

oscillations occur in the wings of the distribution where the
density is small. If, in addition, the property of interest is

averaged with respect to all the particles, as in the case of a

correlation function in a neat fluid, convergence is reached with
modest amounts of effort. Recent work in our group has
demonstrated that momentum correlation functions can be
evaluated with adequate efficiency in liquids wherg(? atoms
are treated explicitly.

B. FBSD for a Molecule in Solution.The focus of this paper
is on the correlation function of a system (atom or molecule)
in solution, whereA andB are system operators corresponding
to observables that depend on the phase space coordirates
of the probed low-dimensional system (the “molecule”). For

simplicity, we assume that the system has three degrees of

freedom and that the solvent contaimatoms with coordinates

R andP, such thad = 3(n + 1). We focus on the momentum
correlation function of the system, whose time integral deter-
mines the diffusion constant of the molecule. It is straightforward
to show in this case that the nonexponential part of the
correlation function has the form

Ap,p(ro,lpo,rl,. - IwRePoRL- - Ry =

3
1+ E(n + D[&(roPosl ) = 2Vs01 E(F g:Posl ) X

3d 3
Zﬂ'*(a'o,Pj,o,lel) fj(a,O'Pj,O’Rj,N) - 2Vmol Z fj*(rj,O'pj,O'rj,l) X
1= 1=

—ih Pi(t) + &(ro.Por WF(Fj 0P 0 )

rnmol + thﬁ)/mol

(2.10)
where
3
E(ro.porn) = Zvvj(rj,ovpj,O'rj,N)pj(t) (2.11)
=
o A
fi(6.0P;,0% ) = % (Xi’k — X0+ if Er%pj,o

(2.12)
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m

Wi (%,0P;0%,) = m
i

[P0 T 2Ry (X — X 0]
(2.13)

Unlike in the case of a neat fluid, where the statistics can be
enhanced by averaging the observable property of interest with
respect to all particles, the calculation of molecular properties
in a solvent cannot benefit from such averaging. This implies
that FBSD simulations of a molecule in solution will be
considerably more demanding. We follow two steps to address
this computational challenge: (i) we use grid-based methods
to perform the solute integrations, and (ii) we reformulate the
FBSD expression in a form suitable for application of IGNoR.
Both of these techniques are combined in the procedure
described in the next section.

C. IGNoR-Enhanced Solution FBSD.The IGNoR methodo-
logy leads to accelerated convergence of a Monte Carlo calcu-
lation in the case of moderately oscillatory functiéh$he basic
idea in this approach is the possibility of relating the negative
volume of the oscillatory part to the positive volume through
an available exact relation, thus canceling statistical error. The
IGNOR technique is applicable to integrals of the type

J= [F)G(x)dx (2.14)

whereF is an oscillatory function whose exact integral

I = [F(x)dx (2.15)
is known, andG is a smooth function of the integration
variables. It is assumed that both functions are real-valued.
Complex-valued integrands are treated by separating the product
into its real and imaginary parts. Consider the volumes of the
positive and negative parts of this function,

I = [Fh(FE))dx, 1~ = [Fx)h(—F(x))dx

(whereh is the Heaviside step function), and their Monte Carlo
estimatesItOand "] From this and the exact value of the
integral ofF, one can define a “corrected” value of the negative
volume,

(2.16)

IT=1-0"0 (2.17)
We also define the integrals
J"= [FX)GX)h(F(x))dx and
I7 = [FOG)h(—F(x))dx (2.18)

of the product functiorFG within the positive and negative
domains ofF. The Monte Carlo estimatéd*Cand[J~[of these
integrals are obtainefilom the same Metropolis random walk
performed to calculate the corresponding integrals ahd the
ratios

R
=—+and
a o

oo
=

oo

+
K

(2.19)

are then computed. These ratios describe how much (and in
which direction) the factog(x) modifies the volumes of the
positive and negative domainsfofThis procedure of calculating
the integralslt and J* from the same Monte Carlo samples
implies that the corresponding estimaf&sand It are corre-
lated, leading to a reduction of statistical uncertainty in their
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ratio. IGNOR proceeds by replacing the Monte Carlo estimate
of J- by the corrected estimate

(2.20)

Thus, the IGNoR prescription for estimating the desired
integral is

I, HI =0,0-«(1—-0.0 (2.21)
To apply the IGNoR methodology to the FBSD expression

for the correlation function of a molecule in solution, we
partition the calculation into two domains, one that contains

J. Phys. Chem. A, Vol. 111, No. 44, 200171323

Ay

3 3d
En - 2ysoIJij*(Rj,O*Pj,O'R,l)fj(Rj,O’Pj,OIRj,N) &(roPoln)
- (2.28)

This partitioning is necessary because of the IGNoOR criterion
that theG function be smooth in the phase space of the IGNoR
integral. Since some components of expression 2.10 are strongly
solvent-dependent, the partitioning allows us to shift these into
the F portion of the IGNOR integrand. Below, we describe the
IGNOR procedure for evaluating the integrals that correspond
to each of these two terms.

To obtain the first part of the correlation function, we

the degrees of freedom of the solvent and one that includes thedefine

coordinates of the molecule in the potential field induced by
the solvent. Accordingly, the potential is split into two terms
V(r,R) = V¢, (R) + Vio-sol(rR) (2.22)

that contain the solventsolvent and molecutesolvent interac-

Fi(RoPoRy- - . Ry = O (RoPoRy- - - Ry)

(2.29)

and

tions, respectively, and the FBSD expression for the momentum G1(Ro.Ry,- - -Ry) = fdro fdpo fdrl' °e fdrN X

correlation function is written in the form

Cop(t) = (271) ™Y fdry fdp, [dry- -« [dry [dR, x

JdPy [dR, - -+ [dRO,(RoPoRy,. - -Ry) X
Omor-solfo:Porl 10+ - SRRy . Ry) x
Ap_p(ro,po,rl,. S wRePoRL- - Ry (2.23)

where
Og(Ro.PoRy- - Ry =
(27H) PR Pole VTR, [ AR
e_AﬁVSOI(RN)DRMe_Aﬁ-i—S°/2| ROPOD (224)
and
Onmoi—solTo:Pol 11+ - i RoRyse - - Ry) =
-3 _Afg-i—mol/2 —ABVimol-sofr 1,R1)
(27h) “pole r (@ e
Eyle ¥ ™|r py(2.25)
It is easy to see that
JdR, [dPy [dR, -+« [dR\O,(RoPoRy,. - Ry =
Tr e*Aﬂng/Z e*AﬁVsol e*A,BTsoI PR e*Aﬂvsol e*A,BTSDVZ — ZSOI
(2.26

that is, the®s part integrates to the partition function of the

pure solvent. On the other hand, integrals over the space of the [dR, [‘dP, [‘dR;* -+ [dRyo(Ry,Po.Ry- - -

low-dimensional system (which depend parametrically on the

solvent) can be performed by quadrature techniques and should

be weakly dependent on the solvent coordinates.

To proceed, we divide the integrand of the correlation
function into two parts by partitioning eq 2.10 into two terms,
A1 and A, which comprise the solute and solvent parts,
respectively:

5 3
Ay(roPol 17w ZE E(roPol'N) = 2Vmol Z fj*(rj,Ovpj,Oarj,D X
=

—ih " PO + &(r oo WFi(Fj 0P 0 )
I'Tlmol_'_ h Aﬂymol

(2.27)

Omor-sofoPol 15+ - - T RosR1s- - - R)A(r 0,00, 11 )
(2.30)

It is not hard to see that eq 2.30 is the FBSD expression for
the (un-normalized) momentum correlation function of the solute
in the potential field created by the solvent atoms in the
instantaneous configuration specified by the solvent coordinates
Ro,R1,...RN. As such,G; is expected to be a slowly varying
function of its variables. Evaluation of eq 2.30 is possible by
guadrature techniques, for example, by the iterative split operator
methodology?®

In terms of the functions defined in egs 2.29 and 2.30, the
first part of the desired correlation function becomes

Ci(t) = [dR, [dP, [dR;- -+ [dRy x
F1(RpPoRy: - - RWGI(RoR,,. . Ry (2.31)

This is exactly in a form suitable for IGNoOR, and the various
integrals required are obtained via a standard Metropolis random
walk using the sampling function
P(Re.Py.Ry. - - RY = 10(Ry,Po.Ry.- . - RYI (2.32)

which is not normalized to unity. Thus, the raw Monte Carlo
estimates of the various integrals must be multiplied by the
integral of the sampling function. Jezek and Makri have sifown
that this integral takes the form

Ry =
1Z (2.33)

where A4 is proportional to an integral that is evaluated by
straightforward Monte Carlo techniques. Using eq 2.21 and the
integral of F; given in eq 2.29, the IGNOR estimate of eq
231 is

C,(t) = 257' A0S0 — kg +5 A0 ] (2.34)
where; [, and 3] ... denote the Monte Carlo estimates

with respect to aormalizedsampling function of the integrals
of F; and F1G;, respectively, over the domain wheFg is
positive.



11324 J. Phys. Chem. A, Vol. 111, No. 44, 2007 Bukhman and Makri

For the calculation of the second term of the time correlation function. At each solvent configuration, the functio@s and

function, we define G, are computed via iterative grid methods. (Because these
functions depend only mildly on the solvent coordinates, it is
FARoPoRy- - - Ry) = Og(Ro.PoRy,- - - Ry) x not necessary in practice to calculate them each time a distant

3 3d solvent particle is moved; we find that these functions need to
N — 2y Zfj*(Rj,0*PJ,O’Ri,l)fj(Ri,O’Pj,O’Rj,N) (2.35) be updated only once per few Monte Carlo steps for those
2 = solvent particles in the immediate neighborhood of the solute,

and less frequently when solute particles outside the first

and solvation shell are moved.)
_ D. Repartitioned IGNoR-Enhanced FBSD. Finally, we
Gy(RoRy,- - -Ry) = fdro fdpo fdrl T fdrN X describe here a strategy for improving the Monte Carlo statistics
Omoi-soll0Pol 13-+ 1 Tng RosRys- - -RWE(roPosl ) (2.36) even further, at least for the short-time values of the correlation

function. We repatrtition the integrands of each of the two parts
Then the second term of the correlation function has the form of the correlation function, defining new functioRsthat include
the zero-time value doB; (i = 1,2), while the new function&;

C,(t) = deo fdpo del. .. deNFz x consist of the value o; relative to its initial value:
(RyPoRy. - - RYG,(RoRy,. - -Ry) (2.37) G
) ) FI=FG (t=0),G({)=——= (2.41)
It is easy to show that eq 2.35 is closely related to the FBSD G(t=0)

integrand of a correlation function where the operafoesdB
are equal to the identity operator in the space of the solvent Implementation of the IGNoR procedure is still possible because
particles, the newF} function integrates to the exact kinetic energy of
the solute-solvent system, which is available with high preci-
Treole sion through a PIMC calculation. BecauSit = 0) = 1, the
—3n . Monte Carlo error of this proceduretat 0 is very small, equal
@) ™" faR, [Py [dRy -+ [AROu(RoPoRs. - R x to that attained by the PIMC calculation of the kinetic energy.
3 - As time increases, the statistical error grows, becoming, at worst,
hl - 4D P R V(IR PR comparable to that obtained through the non-repartitioned
(1 " 2n) 27/50,;1‘, RoPioR )i RoPioRw| (2-38) procedure detailed in the previous subsection. As the trajectories
corresponding to various solvent configurations evolve in time,
It follows that the integral of eq 2.35 vanishes. The function the rescaled solute integrdBi(t) deviates from unity and
G; is again evaluated by iterative techniques at each value of becomes less smooth, leading to an increase in the statistical
the solvent coordinates. error, which is likely to approach the typical IGNoR error within
The IGNoR evaluation of this term proceeds similarly to that one period of oscillation of the correlation function.
described previously. Again, using eq 2.32 as the sampling
function and noting that, = 0, as argued in the preceding Ill. Numerical Test
paragraph, we find

Hiso [ gsolfh |- iHsallf) —

We illustrate the procedure described in section Il by

Z. . S calc_ulati_ng the momentum autqcorrelation function for a solute

52 (A0~ tip AL T (2.39) particle in a model one-dimensional solvent. The solute has the
mass of a Ne atom, while the solvent particles are 15 times

The desired correlation function is obtained by adding egs heavjer. Thg solute and solvent.particles are arranged in a line.
2.34 and 2.39. One observes that the resulting correlation The interaction between any pair of atoms, as well as all atom-
function contains the ratio of the solvent partition function to Wall interactions, are described by a Lennard-Jones potential
the partition function of the molecutesolvent system as a 1
common factor. Partition functions can be computed by ap- V(r) = 46[(2) _ (9)6] (2.42)
propriate path integral Monte Carlo (PIMC) techniques, but such r r
a calculation is not necessary in the present case. This is so ) ) )
because the common factZ,/Z is independent of time and ~ With o = 2A ande = 20 cnT™. The solute is a single particle
thus amounts to an overall scaling of the obtained time function. initially positioned in such a way that an equal number of solvent
As was pointed out in a recent paper, it is easy to scale the particles are on either side of it, while the solvent consists of

Cy(t) =

entire correlation function, that is, the values of atoms wheren = 2, 6, or 8. In order to avoid singularities in
the evaluated potential in the integration over the solute phase
iqu —KI+KIi[ﬂl+q +/152+Q — space, the solvent sampling function inserts an additional
norm norm norm Lennard-Jones “phantom” particle halfway between the two
iy + iy Ally 0 (2.40) walls, thus effectively preventing the solvent particles from

crowding the space that would ultimately be used for the

at the desired time points, to the value of the momentum integration over the solute degrees of freedom. We report
correlation function at zero time (which equals the kinetic energy numerical results at a temperatufe= 39.5°K usingN = 3

of the molecule-solvent system) that is readily available through path integral beads for each particle.

a PIMC calculation. The momentum autocorrelation (scaled to its zero-time value)

To summarize the procedure described so far, one performsof the solute particle interacting with 6 or 8 solvent particles is

a Monte Carlo random walk in the space of the solvent variables depicted in Figures 1 and 2. The procedure for calculating error
Ro,Po,R1,...Rn to estimate the particular integrals that enter the bars in the IGNoR-enhanced results is summarized in the
IGNOR prescription for each of the two terms in the correlation Appendix. Figure 1 compares the IGNoR-enhanced FBSD result
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His) Figure 3. Ratio of statistical errors in IGNoR-enhanced FBSD and
Figure 1. Real parts of the solute momentum autocorrelation function plain solution FBSD results as a function of the number of solvent
for the model described in section Il with six solvent particles. Red: particles.
results obtained via a direct application of the FBSD methodology (eq
2.6), with 1.2 million Monte Carlo points per dimension. Blue: results
obtained through the IGNoR-enhanced FBSD methodology with 35 000
Monte Carlo points per dimension.

performed with the same 35000 Monte Carlo passes per
dimension. It is seen that performing the solute integrals by
guadrature leads to a large reduction of statistical error compared

1.6 = . . - - . to the raw Monte Carlo treatment of all coordinates. (The error
T T bars of the raw Monte Carlo results with 35 000 passes are 6
121 times larger than those shown in Figure 1.) Further, the
additional reduction of statistical error achieved through ap-
o8t plication of the IGNOR procedure is seen to be significant.
€ o4 | Finally, Figure 3 illustrates the reduction of statistical error
of achieved by the IGNoR methodology as a function of system
:-:,‘“& ol [T size. Plotted is the ratio of the IGNoR-enhanced FBSD result
[§) ! |J,,.,..-' and the solutior FBSD result (where the solute integrations
04 'ﬁ;.--.ii-""."| i are performed by quadrature methods) for different numbers of
il _|_=5 particles, with a fixed number (35 000) of Monte Carlo points
0.8 |42 R per integral dimension. As we suggest in our discussion of the
R IGNOR procedure, the improvement over standard estimates is
-1.2 ; : : — g most significant in cases when tk&function (in our case, the

SR 150: f:OD = e solute integral) is weakly dependent on the variables of
(fs) integration. As more particles are added to the solvent farther
Figure 2. Comparison of solution FBSD results with (blue) and without away form the solute particle, the corresponding weak selute
g:gégg?f;g%oevigggt;cs’riahging: ;’f eight solvent particles. The o ent interaction leads to a weak dependence of Ghe
) } ' functions on the coordinates of those particles. As a result, the
obtained from a calculation that used 35 000 Monte Carlo passes|GNoR error grows very slowly with the number of solvent
per integral dimension, to the result of a direct FBSD calculation aricles, in contrast to the uncorrected result whose statistical

of the same quantity (i.e., a direct implem_entatior_1 of eq_2.23) uncertainty increases at an exponential rate.
that used 1.2 10° Monte Carlo passes per integration variable.

(We do not present the raw Monte Carlo results .with 35 OQO IV. Concluding Remarks
passes, as the corresponding error bars are approximately 6 times
larger and cannot be drawn on the same scale.) Calculations In this paper we have extended the FBSD methodology to a
were performed on a 20-processor Linux cluster, and the CPU particle in solution. We have derived an FBSD expression for
times required for the two calculations were roughly equivalent. the momentum correlation function of the solute and discussed
Even though the IGNoR-enhanced FBSD procedure used abousome potentially challenging issues associated with its numerical
35 times fewer samples than the conventional Monte Carlo evaluation. Namely, if the Boltzmann operator of the solvent
calculation, the error bars of the former are actually slightly particles needs to be quantized by more than a single path
smaller than those of the latter. This dramatic reduction of integral “bead”, the oscillatory character of the integral leads
statistical error demonstrates the benefits attainable by theto poor statistics as the number of solvent particles increases.
methodology described in this paper. Of course, the grid-basedBecause such calculations are typically done with a single solute
calculation of the solute integrals makes the IGNoR-enhanced particle in the simulation cell, one cannot take advantage of
FBSD calculation more expensive for each Monte Carlo point, averaging, as in the case of a neat fluid.
but this increase in CPU cost should become relatively less  The first step in the direction of addressing these challenges
significant when the number of solvent particles is large. involves partitioning the FBSD integrand into solvent and solute
Figure 2 presents a similar calculation, now with the solute domains and performing the solute integrals by quadrature-based
in an environment of eight solvent particles. The comparison methods. As shown in Figure 2, this treatment leads to a
is now to a solutior-FBSD result (i.e., the sum of eqgs 2.31 significant reduction in the statistical error. The second (and
and 2.37 evaluated by Monte Carlo, with ti& functions perhaps more crucial step for application to real systems with
obtained via the iterative grid technique) to which no IGNoR hundreds of particles) involves the expression of the solution
error enhancement has been applied. Both calculations wereFBSD correlation function in a form amenable to IGNoR. This
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procedure exploits knowledge of the exact integral in the absenceestimate ofl* by conducting a second, longer random walk

of the solute particles to achieve a partial cancellation of error.

(which also lowers its error estimate). In the case of solution

The improvement attained this way becomes more dramatic asFBSD discussed in this paper, this longer random walk to obtain

the number of solvent atoms is increased.

Even though the IGNoOR methodology was applied here to
the special case of a molecule in solution, we believe it will
find application in many different situations where integrals of
oscillatory functions must be calculated using Monte Carlo
techniques. Many quantities of interest in quantum dynamics

I requires very little additional cost, since this integral does
not require trajectory propagation or the calculation of solute
averages via split propagator methods. The calculations reported
in section 1l took advantage of this procedure for further
reduction of statistical error.

In cases of complek andG, their product yields four terms,

and statistical mechanics involve an oscillatory function that two of which are real. Thus, the procedure for obtaining the
comprises the integrand of a known quantity, such as a partition IGNoR error involves repeating the procedure described above
function or a related observable that is available either analyti- for each of the four products.

cally or through an easier (thus very accurate) numerical

calculation. Knowledge of such an integral is exploited in References and Notes

IGNOR, leading to a substantial cancellation of statistical error.
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Appendix
Here we summarize our procedure for obtaining Monte Carlo
error bars within the IGNoR methodology,
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